Coupling of Precipitation and Cloud Organization to Moisture Transport in Extratropical Cyclones

¹Sun Wong, ²Catherine M. Naud, ¹Longtao Wu, ¹Brian H. Kahn, ³George Huffman, and ¹Eric J. Fetzer ¹Jet Propulsion Laboratory/California Institute of Technology, ²Columbia University, ³Goddard Space Flight Center

PWS

WS

PCF

PA

Objectives

- Use extratropical cyclones (ETCs) to link precipitation and cloud organization to moisture transport.
- Identify the associated feedback to ETC development

A: Water vapor

Convergence is used to
Conve

B: Precipitation formation is favored (P >> ∂Q/∂t). **Inference: A** and **B** have the same moisture convergence but different clouds.

θ_1 θ_2 θ_3

ETC Coordinate System

Look at ETCs in a coordinate system in which the warm fronts are along positive-x, and the cold fronts along negative-y directions.

Precipitation, Precipitable Water, and Moisture Budgets in ETC Coordinates

- Cold front (CF) and warm sector (WS): Strong precipitation occurs in regions of maximum precipitable water.
- Pre-warm front (PWF) and warm front (WF): A large portion
 of water vapor convergence is used to moisten the
 atmosphere: precipitation does not occur where precipitable
 water is maximum.
- Although WF and CF have similar precipitation amount, their cloud type combinations differ.

Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Drive Pasadena, CA 91109

 WF and CF: Similar QCNVG implies similar precipitation amount. More negative QADVT in CF leads to its less Cs compared to Dc.

Precipitation Variability and Phases of Moisture Transport

QCNVG (mm/day)

Values on Phase Diagram (mm/day)

Cloud Type Frequency Distributions in QADVT-QCNVG

Conclusions

Phases of Moisture Transport, Cloud Type Distributions, Q2, and ω -Profiles for Accelerating ETCs

- Phases of moisture transport (QADVT vs QCNVG) control precipitation variability and cloud organization in ETCs
- Deepening ETCs have rapid moisture supply and ventilation by the atmosphere, while decaying ETCs correspond to slower moisture transport processes.
- Deepening ETCs are more efficient in meridional transport of water vapor.